Protein Information

ID 4739
Name 5 HT1B
Synonyms 5 HT 1B; S12; 5 HT 1D beta; 5 HT1B; 5 HT1DB; 5 hydroxytryptamine (serotonin) receptor 1B; 5 hydroxytryptamine 1B receptor; HTR1B…

Compound Information

ID 1819
Name piperazine
CAS piperazine

Reference

PubMed Abstract RScore(About this table)
11999893 Schreiber R, De Vry J: Role of 5-hT2C receptors in the hypophagic effect of m-CPP, ORG 37684 and CP-94,253 in the rat. Prog Neuropsychopharmacol Biol Psychiatry. 2002 Apr;26(3):441-9.
Compounds that stimulate 5-HT2C and/or 5-HT1B receptors induce hypophagia, but the relative role of these receptors in the control of feeding behaviour remains to be unequivocally demonstrated. The objectives of the present study were: (a) comparison of the hypophagic effect of the mixed 5-HT2C/1B receptor agonist, m-CPP, with that of ORG 37684 and CP-94,253, a relatively selective 5-HT2C and 5-HT1B receptor agonist, respectively; (b) verification of the contribution of 5-HT2C receptors to the hypophagic effect of these compounds by antagonism experiments; and (c) to test whether cotreatment with ORG 37684 and CP-94,253 leads to a more pronounced reduction of food intake as compared with treatment with either compound alone. Food intake was measured in a free feeding experimental protocol employing female Wistar rats. m-CPP was more potent in suppressing food intake than ORG 37684 and CP-94,253 (ED50 values for the first hour of access: 0.45, 1.84 and 3.48 mg/kg ip, respectively). The 5-HT2C receptor antagonists, metergoline and SB 242.084, completely reversed the hypophagic effect of ORG 37684, but not that of CP-94,253 and m-CPP. The hypophagic effect of ORG 37684 was potentiated by a low (inactive) dose of CP-94,253 (ED50: 4.95 and 2.44 mg/kg ip after vehicle and CP-94,253 pretreatment, respectively) and vice versa (ED50 values: 4.02 and 0.62 mg/kg ip). It is concluded that the hypophagic effect of ORG 37684-but not that of m-CPP and CP-94,253--is exclusively mediated by activation of 5-HT2C receptors. The results further indicate that simultaneous activation of 5-HT2C and 5-HT1B receptors underlies the higher potency of m-CPP in reducing food intake, as compared with other, more selective, compounds.
3(0,0,0,3)