Protein Information

ID 4745
Name prodynorphin
Synonyms Beta neoendorphin; Beta neoendorphin dynorphin; Beta neoendorphin dynorphin precursor; Dynorphin; Enkephalin B; Leu enkephalin; Leumorphin; PDYN…

Compound Information

ID 1819
Name piperazine
CAS piperazine

Reference

PubMed Abstract RScore(About this table)
12360537 Smith LA, Tel BC, Jackson MJ, Hansard MJ, Braceras R, Bonhomme C, Chezaubernard C, Del Signore S, Rose S, Jenner P: Repeated administration of piribedil induces less dyskinesia than L-dopa in MPTP-treated common marmosets: a behavioural and biochemical investigation. Mov Disord. 2002 Sep;17(5):887-901.
Piribedil ([1-(3,4-methylenedioxybenzyl)-4-(2-pyrimidinyl) piperazine]; S 4200) is a dopamine agonist with equal affinity for D (2)/D (3) dopamine receptors effective in treating Parkinson's disease as monotherapy or as an adjunct to levodopa (L-dopa). However, its ability to prime basal ganglia for the appearance of dyskinesia is unknown. We now report on the ability of repeated administration of piribedil to induce dyskinesia in drug naive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) -lesioned common marmosets compared with L-dopa and its actions on the direct and indirect striatal outflow pathways. Administration of piribedil (4.0-5.0 mg/kg orally) or L-dopa (12.5 mg/kg orally plus carbidopa 12.5 mg/kg orally twice daily) produced equivalent increases in locomotor activity and reversal of motor deficits over a 28-day study period. Administration of L-dopa resulted in the progressive development of marked dyskinesia over the period of study. In contrast, administration of piribedil produced a significantly lower degree and intensity of dyskinesia. Surprisingly, piribedil caused an increase in vigilance and alertness compared to L-dopa, which may relate to the recently discovered alpha (2)-noradrenergic antagonist properties of piribedil. The behavioural differences between piribedil and L-dopa are reflected in the biochemical changes associated with the direct striatal output pathway. Administration of L-dopa or piribedil did not reverse the MPTP-induced up-regulation of preproenkephalin A mRNA in rostral or caudal areas of the putamen or caudate nucleus. In contrast, administration of either piribedil or L-dopa reversed the downregulation of preprotachykinin mRNA induced by MPTP in rostral and caudal striatum. L-dopa, but not Piribedil, reversed the decrease in preproenkephalin B mRNA produced by MPTP treatment.
0(0,0,0,0)