Protein Information

ID 27
Name cytochrome c
Synonyms CYC; CYCS; Cytochrome C; HCS; Cytochrome Cs

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
10597238 Suzuki S, Higuchi M, Proske RJ, Oridate N, Hong WK, Lotan R: Implication of mitochondria-derived reactive oxygen species, cytochrome C and caspase-3 in N-(4-hydroxyphenyl) retinamide-induced apoptosis in cervical carcinoma cells. Oncogene. 1999 Nov 4;18(46):6380-7.
N-(4-Hydroxyphenyl) retinamide (4HPR) is currently used in cancer prevention and therapy trials. It is thought that its effects result from induction of apoptosis. 4HPR-induced apoptosis in human cervical carcinoma C33A cells involves enhanced generation of reactive oxygen species (ROS). In this study we explored the mechanism by which 4HPR increases ROS and induces apoptosis in these cells. 4HPR induced cytochrome c release from mitochondria to cytoplasm, activated caspase-3, and caused a membrane permeability transition (MPT). All these 4HPR's effects, as well as the induction of apoptosis, were inhibited by antioxidants, which decrease ROS. Thenoyltrifluoroacetone, a mitochondrial respiratory chain (MRC) complex II inhibitor, and carbonylcyanide m-chlorophenyl hydrazone, which uncouples electron transfer and ATP synthesis and inhibits ROS generation by MRC, inhibited 4HPR-induced ROS generation very effectively. Rotenone, an MRC complex I inhibitor was less effective and azide, an MRC complex IV inhibitor, exhibited a marginal effect. In contrast, antimycin A, an MRC complex III inhibitor, enhanced 4HPR-induced ROS generation. These findings suggest that 4HPR enhances ROS generation by affecting a target between complex II and complex III, presumably coenzyme Q. This effect is followed by release of cytochrome c, increased caspase-3 activity, induction of MPT and eventual DNA fragmentation and cell death.
2(0,0,0,2)