Protein Information

ID 33
Name ATPase
Synonyms ATP7A; MK; ATPase; Cation transporting ATPase; ATP7A protein; ATPase Cu(2+) transporting alpha polypeptide; Copper pump 1; Copper transporting ATPase 1…

Compound Information

ID 332
Name 4-aminopyridine
CAS 4-pyridinamine

Reference

PubMed Abstract RScore(About this table)
11007532 Wu L, Wang Z, Wang R: Tetraethylammonium-evoked oscillatory contractions of rat tail artery: a K-K model. Can J Physiol Pharmacol. 2000 Sep;78(9):696-707.
Spontaneously rhythmic contraction of peripheral blood vessels actively modulates the peripheral circulation and blood pressure. However, the underlying mechanisms for the complex rhythmic contraction patterns of various vascular tissues are not yet fully understood. In the present study, the tetraethylammonium (TEA)-induced spontaneously oscillatory contractions of isolated rat tail artery tissues were examined. It was found that TEA evoked arterial oscillatory contractions in a concentration-dependent, but endothelium-independent manner. The voltage-dependent K+ (Kv) channel specific blocker, 4-aminopyridine (4-AP), induced a sustained, but not oscillated, vascular contraction. The presence of 4-AP had no effect on the TEA-induced oscillatory contractions. The blockade of KCa channels with charybdotoxin or apamin did not affect the basal force of vascular tissues. Neither the TEA-induced oscillatory contraction was affected by these blockers. The opening of KATP channels by levcromakalim or their blockade by glybenclamide ceased or increased, respectively, the oscillation of TEA-induced contractions. The absence of Ca2+ or the presence of nifedipine in the bath solution completely abolished the effects of TEA. The inhibition of Ca2+-ATPase in the sarcoplasmic reticulum with micromolar concentrations of thapsigargin or cyclopiazonic acid either abolished or enhanced, respectively, the TEA-induced oscillatory contractions. Ryanodine did not affect the TEA-induced oscillatory contraction. In conclusion, the TEA-induced oscillatory contraction may be initiated by the blockade of the TEA-sensitive delayed rectifier K+ channels and maintained by the TEA-insensitive but ATP-sensitive K+ channels. This K-K model presents a novel mechanism for the depolarization-induced rhythmic contractions of small arteries.
1(0,0,0,1)