Protein Information

ID 645
Name pyruvate dehydrogenase (protein family or complex)
Synonyms Pyruvate dehydrogenase; Pyruvate dehydrogenases

Compound Information

ID 955
Name TCA
CAS 2,2,2-trichloroacetic acid

Reference

PubMed Abstract RScore(About this table)
12439292 Choi IY, Lei H, Gruetter R: Effect of deep pentobarbital anesthesia on neurotransmitter metabolism in vivo: on the correlation of total glucose consumption with glutamatergic action. J Cereb Blood Flow Metab. 2002 Nov;22(11):1343-51.
The effect of deep barbiturate anesthesia on brain glucose transport, TCA cycle flux, and aspartate, glutamate, and glutamine metabolism was assessed in the rat brain using 13C nuclear magnetic resonance spectroscopy at 9.4 T in conjunction with [1-13C] glucose infusions. Brain glucose concentrations were elevated, consistent with a twofold reduced cerebral metabolic rate for glucose (CMRglc) compared with light alpha-chloralose anesthesia. Using a mathematical model of neurotransmitter metabolism, several metabolic reaction rates were extracted from the rate of label incorporation. Total oxidative glucose metabolism, CMRglc (ox), was 0.33 +/- 0.03 micromol x g (-1) x min (-1). The neuronal TCA cycle rate was similar to that in the glia, 0.35 +/- 0.03 micromol x g (-1) x min (-1) and 0.26 +/- 0.06 micromol x g (-1) x min (-1), respectively, suggesting that neuronal energy metabolism was mainly affected. The rate of pyruvate carboxylation was 0.03 +/- 0.01 micromol x g (-1) x min (-1). The exchange rate between cytosolic glutamate and mitochondrial 2-oxoglutarate, Vx, was equal to the rate of neuronal pyruvate dehydrogenase flux. This indicates that Vx is coupled to CMRglc (ox), implying that the malate-aspartate shuttle is the major mechanism that facilitates label exchange across the inner mitochondrial membrane. The apparent rate of glutamatergic neurotransmission, V (NT), was 0.04 +/- 0.01 micromol x g x min, consistent with strong reductions in electrical activity. However, the rates of cerebral oxidative glucose metabolism and glutamatergic neurotransmission, CMRglc (ox)/V (NT), did not correlate with a 1:1 stoichiometry.
1(0,0,0,1)