Protein Information

ID 27
Name cytochrome c
Synonyms CYC; CYCS; Cytochrome C; HCS; Cytochrome Cs

Compound Information

ID 366
Name anthraquinone
CAS 9,10-anthracenedione

Reference

PubMed Abstract RScore(About this table)
15941563 Su YT, Chang HL, Shyue SK, Hsu SL: Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Biochem Pharmacol. 2005 Jul 15;70(2):229-41.
Emodin, a natural anthraquinone derivative isolated from Rheum palmatum L., has been reported to exhibit anti-cancer effect on several human cancers such as liver cancers and lung cancers. However, the molecular mechanisms of emodin-mediated tumor regression have not been fully defined. In this study, we show that treatment with 50 microM emodin resulted in a pronounced release of cytochrome c, activation of caspase-2, -3, and -9, and apoptosis in human lung adenocarcinoma A549 cells. These events were accompanied by the inactivation of ERK and AKT, generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential ((Delta) psi (m)), decrease of mitochondrial Bcl-2, and increase of mitochondrial Bax content. Ectopic expression of Bcl-2, or treatment with aurintricarboxylic acid, furosemide or caspase inhibitors markedly blocked emodin-induced apoptosis. Conversely, pharmacologic ERK and AKT inhibition promoted emodin-induced apoptosis. Furthermore, the free radical scavenger ascorbic acid and N-acetylcysteine attenuated emodin-mediated ROS production, ERK and AKT inactivation, mitochondrial dysfunction, Bcl-2/Bax modulation, and apoptosis. Take together, these findings suggest that in A549 cells, emodin-mediated oxidative injury acts as an early and upstream change in the cell death cascade to antagonize cytoprotective ERK and AKT signaling, triggers mitochondrial dysfunction, Bcl-2 and Bax modulation, mitochondrial cytochrome c release, caspase activation, and consequent leading to apoptosis.
2(0,0,0,2)