Protein Information

ID 1061
Name S12
Synonyms 5 HT 1B; S12; 5 HT 1D beta; 5 HT1B; 5 HT1DB; 5 hydroxytryptamine (serotonin) receptor 1B; 5 hydroxytryptamine 1B receptor; HTR1B…

Compound Information

ID 366
Name anthraquinone
CAS 9,10-anthracenedione

Reference

PubMed Abstract RScore(About this table)
18050946 Hong YG, Guo J, Xu ZC, Xu MY, Sun GP: Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12. J Microbiol Biotechnol. 2007 Mar;17(3):428-37.
The potential for humic substances to serve as terminal electron acceptors in microbial respiration and the effects of humic substances on microbial azoreduction were investigated. The dissimilatory azoreducing microorganism Shewanella decolorationis S12 was able to conserve energy to support growth from electron transport to humics coupled to the oxidation of various organic substances or H2. Batch experiments suggested that when the concentration of anthraquinone-2-sulfonate (AQS), a humics analog, was lower than 3 mmol/l, azoreduction of strain S12 was accelerated under anaerobic condition. However, there was obvious inhibition to azoreduction when the concentration of the AQS was higher than 5 mmol/l. Another humics analog, anthraquinone-2-sulfonate (AQDS), could still prominently accelerate azoreduction, even when the concentration was up to 12 mmol/l, but the rate of acceleration gradually decreased with the increasing concentration of the AQDS. Toxic experiments revealed that AQS can inhibit growth of strain S12 if the concentration past a critical one, but AQDS had no effect on the metabolism and growth of strain S12 although the concentration was up to 20 mmol/l. These results demonstrated that a low concentration of humic substances not only could serve as the terminal electron acceptors for conserving energy for growth, but also act as redox mediator shuttling electrons for the anaerobic azoreduction by S. decolorationis S12. However, a high concentration of humic substances could inhibit the bacterial azoreduction, resulting on the one hand from the toxic effect on cell metabolism and growth, and on the other hand from competion with azo dyes for electrons as electron acceptor.
8(0,0,1,3)