20075623 |
Jin BS, Han SG, Lee WK, Ryoo SW, Lee SJ, Suh SW, Yu YG: Inhibitory mechanism of novel inhibitors of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae. J Microbiol Biotechnol. 2009 Dec;19(12):1582-9. Bacterial UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) catalyzes the transfer of enolpyruvate from phosphoenolphyruvate (PEP) to uridine diphospho-N-acetylglucosamine (UNAG), which is the first step of bacterial cell wall synthesis. We identified thimerosal, thiram, and ebselen as effective inhibitors of Heamophilus influenzae MurA by screening a chemical library that consisted of a wide range of bioactive compounds. When MurA was preincubated with these inhibitors, their 50% inhibitory concentrations (IC50s) were found to range from 0.1 to 0.7 microM. In particular, thimerosal suppressed the growth of several different Gram-negative bacteria such as Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium at a concentration range of 1-2 microg/ml. These inhibitors covalently modified the cysteine residue near the active site of MurA. This modification changed the open conformation of MurA to a more closed configuration, which may have prevented the necessary conformational change from occurring during the enzyme reaction. |
2(0,0,0,2) |