Protein Information

ID 33
Name ATPase
Synonyms ATP7A; MK; ATPase; Cation transporting ATPase; ATP7A protein; ATPase Cu(2+) transporting alpha polypeptide; Copper pump 1; Copper transporting ATPase 1…

Compound Information

ID 615
Name sodium azide
CAS sodium azide

Reference

PubMed Abstract RScore(About this table)
9792691 Kihara A, Ito K: Translocation, folding, and stability of the HflKC complex with signal anchor topogenic sequences. J Biol Chem. 1998 Nov 6;273(45):29770-5.
HflK and HflC are plasma membrane proteins of Escherichia coli, each having a large C-terminal domain exposed to the periplasmic space and an N-terminally located transmembrane segment, which should act as a signal anchor sequence for their biogenesis. They form a complex, HflKC. We studied in vivo processes of biogenesis of this pair of membrane proteins. Translocation of the C-terminal domains across the membrane, as assessed by their accessibility to externally added protease, was completed within 1 min after the synthesis in wild-type cells as well as in the secB mutant cells or in the FtsY-depleted cells. In contrast, translocation of these domains was retarded markedly when sodium azide was added to inhibit SecA ATPase and blocked almost completely in secY- or secD-defective mutant cells. Thus, although targeting of these membrane proteins depends neither on the SecB chaperone nor on the SRP pathway, their translocation occurs exclusively via the Sec translocase complex. Translocated HflK molecules were then folded into a partially protease-resistant conformation, taking a few minutes, and this folding was induced upon association with HflC. Singly expressed HflK and HflC were unstable in vivo and periplasmic proteases DegP and Prc were involved in the degradation of the HflK subunit. We characterized several hflA alleles isolated in early studies; they alter the HflK or the HflC sequence and destabilize the HflKC complex.
81(1,1,1,1)