Protein Information

ID 1412
Name EGFR
Synonyms EGF receptor; EGFR; EGFR protein; ERBB; ERBB 1; ERBB1; Epidermal growth factor receptor; Epidermal growth factor receptor isoform a variant…

Compound Information

ID 954
Name SMA
CAS sodium 2-chloroacetate

Reference

PubMed Abstract RScore(About this table)
20225242 Mulder GM, Nijboer WN, Seelen MA, Sandovici M, Bos EM, Melenhorst WB, Trzpis M, Kloosterhuis NJ, Visser L, Henning RH, Leuvenink HG, Ploeg RJ, Sunnarborg SW, van Goor H: Heparin binding epidermal growth factor in renal ischaemia/reperfusion injury. J Pathol. 2010 Feb 3.
The epidermal growth factor (EGF) receptor and its ligands are crucially involved in the renal response to ischaemia. We studied the heparin binding-epidermal growth factor (HB-EGF), a major ligand for the EGF receptor, in experimental and human ischaemia/reperfusion injury (IRI). HB-EGF mRNA and protein expression was studied in rat kidneys and cultured human tubular (HK-2) cells that were subjected to IRI and in human donor kidneys during transplantation. The effect of EGF receptor inhibition was investigated in vivo and in vitro. Furthermore, urinary HB-EGF protein excretion was studied after renal transplantation. Finally, HB-EGF KO and WT mice were subjected to IRI to study the role of HB-EGF in renal injury. HB-EGF mRNA was significantly up-regulated in the early phase of IRI in rats, cells, and human donor biopsies. Treatment with PKI-166 reduces macrophage accumulation and interstitial alpha-SMA in the early phase of IRI in rats. In vitro, PKI-166 causes a marked reduction in HB-EGF-induced cellular proliferation. Urinary HB-EGF is increased after transplantation compared with control urines from healthy subjects. HB-EGF KO mice subjected to IRI revealed significantly less morphological damage after IRI, compared with WT mice. We conclude that IRI results in early induction of HB-EGF mRNA and protein in vivo and in vitro. Absence of HB-EGF and inhibition of the EGF receptor in the early phase of IRI has protective effects, suggesting a modulating role for HB-EGF. Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
1(0,0,0,1)