8441997 |
Pearson PG, Omichinski JG, McClanahan RH, Soderlund EJ, Dybing E, Nelson SD: Metabolic activation of tris (2,3-dibromopropyl) phosphate to reactive intermediates. Toxicol Appl Pharmacol. 1993 Feb;118(2):186-95. I. Covalent binding and reactive metabolite formation in vitro.. Analogs of tris (2,3-dibromopropyl) phosphate (Tris-BP) either labeled at specific positions with carbon-14, phosphorus-32, or oxygen-18 or dual-labeled with both deuterium and tritium were used as metabolic probes to study the chemical and metabolic events in the bioactivation of Tris-BP to chemically reactive metabolites in liver microsomal preparations. Oxidation at the terminal (C-3) carbon atom of the propyl groups of Tris-BP yielded the direct-acting mutagen 2-bromoacrolein as the major metabolite that binds to DNA. Although this reactive metabolite also appears to bind to microsomal protein, the rate of binding of radiolabeled Tris-BP to protein is 15-20x greater than binding to DNA, and some metabolites that retain the phosphate group are bound. Studies with deuterated analogs of Tris-BP implicate oxidation at C-2 of the propyl group as a major pathway that leads to protein binding which is enhanced by phenobarbital pretreatment of rats. Moreover, investigations with 18O-Tris-BP and H2 (18) O show that Bis-BP that is formed from oxidation of Tris-BP incorporates one atom of oxygen from water. Deuterium isotope studies suggest that most of the Bis-BP arises from initial oxidation at C-2. Taken together these studies indicate that P-450 oxidation of Tris-BP at C-2 of the propyl group yields a reactive alpha-bromoketone metabolite of Tris-BP that can either alkylate proteins directly or be hydrolyzed to Bis-BP and an alpha-bromo-alpha'-hydroxyketone that can alkylate microsomal proteins. |
1(0,0,0,1) |