Protein Information

ID 541
Name acetylcholine receptors (protein family or complex)
Synonyms Acetylcholine receptor; Acetylcholine receptors

Compound Information

ID 1324
Name anabasine
CAS

Reference

PubMed Abstract RScore(About this table)
12611953 Uteshev VV, Meyer EM, Papke RL: Regulation of neuronal function by choline and 4OH-GTS-21 through alpha 7 nicotinic receptors. J Neurophysiol. 2003 Apr;89(4):1797-806. Epub 2002 Dec 4.
A unique feature of alpha7 nicotinic acetylcholine receptor physiology is that, under normal physiological conditions, alpha7 receptors are constantly perfused with their natural selective agonist, choline. Studying neurons of hypothalamic tuberomammillary (TM) nucleus, we show that choline and the selective alpha7 receptor agonist 4OH-GTS-21 can regulate neuronal functions directly, via activation of the native alpha7 receptors, and indirectly, via desensitizing those receptors or transferring them into a state "primed" for desensitization. The direct action produces depolarization and thereby increases the TM neuron spontaneous firing (SF) rate. The regulation of the spontaneous firing rate is robust in a nonphysiological range of choline concentrations > 200 microM. However, modest effects persist at concentrations of choline that are likely to be attained perineuronally under some conditions (20-100 microM). At high physiological concentration levels, the indirect choline action reduces or even eliminates the responsiveness of alpha7 receptors and their availability to other strong cholinergic inputs. Similarly to choline, 4OH-GTS-21 increases the TM neuron spontaneous firing rate via activation of alpha7 receptors, and this regulation is robust in the range of clinically relevant concentrations of 4OH-GTS-21. We conclude that factors that regulate choline accumulation in the brain and in experimental slices such as choline uptake, hydrolysis of ACh, membrane phosphatidylcholine catabolism, and solution perfusion rate influence alpha7 nAChR neuronal and synaptic functions, especially under pathological conditions such as stroke, seizures, Alzheimer's disease, and head trauma, when the choline concentration in the CSF is expected to rise.
1(0,0,0,1)