Protein Information

ID 541
Name acetylcholine receptors (protein family or complex)
Synonyms Acetylcholine receptor; Acetylcholine receptors

Compound Information

ID 1328
Name nicotine
CAS

Reference

PubMed Abstract RScore(About this table)
19151195 Paleari L, Negri E, Catassi A, Cilli M, Servent D, D'Angelillo R, Cesario A, Russo P, Fini M: Inhibition of nonneuronal alpha7-nicotinic receptor for lung cancer treatment. J Bone Miner Metab. 2009;27(5):555-61. Epub 2009 May 13.
RATIONALE: Studies strongly suggest that the nicotinic acetylcholine receptors for nicotine (nAChRs) play a significant role in lung cancer predisposition and natural history. The nAChR alpha7 subunit has been found to be pivotal in the control of nicotine-induced lung cancer development and in growth signal transduction induced by nicotine binding to nAChRs. OBJECTIVES: To investigate the anticancer effects of alpha7-nAChR antagonists. METHODS: (1) To check the correlation between alpha7-nAChR presence and alpha-cobratoxin (alpha-CbT) sensitivity, binding experiments were performed in various normal human cells, lung cancer cell lines, and primary tumoral cells; (2) to demonstrate that alpha-CbT might be an efficient adjuvant therapy for non-small cell lung cancer (NSCLC) we expanded our previous observations to a panel of NSCLCs of various subtypes orthotopically grafted on nonobese diabetic/severe combined immunodeficient mice; (3) to gain insight into the mechanism of alpha-CbT-induced tumor reduction, the cells obtained after enzymatic digestion of tumors were analyzed for procaspase-9, Bax, Bad, and Bcl-X (L) protein; and (4) Snail/E-cadherin expression was evaluated to acquire information about the chemoresistance of cancer cells to alpha-CbT. MEASUREMENTS AND MAIN RESULTS: We report herein the results of an experimental strategy aimed at investigating the antitumor effects of a powerful alpha7-nAChR antagonist, alpha-CbT, in an in vivo setting set to mimic the clinical setting of lung cancer; in addition, a possible explanation for alpha-CbT selectivity toward cancer cells is presented. CONCLUSIONS: We report the prolonged survival of alpha-CbT-treated animals in our mouse model of NSCLC, which is most likely the result of multiple mechanisms, including various antiproliferative and antiangiogenic effects.
6(0,0,1,1)