19850127 |
Ruan Q, Harrington AJ, Caldwell KA, Caldwell GA, Standaert DG: VPS41, a protein involved in lysosomal trafficking, is protective in Caenorhabditis elegans and mammalian cellular models of Parkinson's disease. Neurobiol Dis. 2010 Feb;37(2):330-8. Epub 2009 Oct 20. VPS41 is a protein identified as a potential therapeutic target for Parkinson's disease (PD) as a result of a high-throughput RNAi screen in Caenorhabditis elegans. VPS41 has a plausible mechanistic link to the pathogenesis of PD, as in yeast it is known to participate in trafficking of proteins to the lysosomal system and several recent lines of evidence have pointed to the importance of lysosomal system dysfunction in the neurotoxicity of alpha-synuclein (alpha-syn). We found that expression of the human form of VPS41 (hVPS41) prevents dopamine (DA) neuron loss induced by alpha-syn overexpression and 6-hydroxydopamine (6-OHDA) neurotoxicity in C. elegans. In SH-SY5Y neuroblastoma cell lines stably transfected with hVPS41, we determined that presence of this protein conferred protection against the neurotoxins 6-OHDA and rotenone. Overexpression of hVPS41 did not alter the mitochondrial membrane depolarization induced by these neurotoxins. hVPS41 did, however, block downstream events in the apoptotic cascade including activation of caspase-9 and caspase-3, and PARP cleavage. We also observed that hVPS41 reduced the accumulation of insoluble high-molecular weight forms of alpha-syn in SH-SY5Y cells after treatment with rotenone. These data show that hVPS41 is protective against both alpha-syn and neurotoxic-mediated injury in invertebrate and cellular models of PD. These protective functions may be related to enhanced clearance of misfolded or aggregated protein, including alpha-syn. Our studies indicate that hVPS41 may be a useful target for developing therapeutic strategies for human PD. |
1(0,0,0,1) |