Protein Information

ID 47
Name cytochrome P450 (protein family or complex)
Synonyms cytochrome P450; cytochrome P 450; CYP450; CYP 450

Compound Information

ID 1802
Name piperonyl butoxide
CAS 5-[[2-(2-butoxyethoxy)ethoxy]methyl]-6-propyl-1,3-benzodioxole

Reference

PubMed Abstract RScore(About this table)
9465388 Zhang L, Kasai S, Shono T: In vitro metabolism of pyriproxyfen by microsomes from susceptible and resistant housefly larvae. Arch Insect Biochem Physiol. 1998;37(3):215-24.
Levels of cytochrome P450 and b5 were investigated in microsomal enzymes of houseflies from the gut and fat body of the third instar larvae of a pyriproxyfen-resistant strain (YPPF) and two pyriproxyfen-susceptible strains (YS and SRS). In comparison to the YS and SRS strains, YPPF microsomes had higher levels of total cytochrome P450s in both the gut and fat body. Furthermore, microsomes from the gut and fat body of YPPF larvae were found to have a much greater ability to hydroxylate aniline than YS larvae. In vitro metabolism studies of pyriproxyfen indicated that the metabolic rates were much higher in both the gut and fat body of YPPF larvae than of YS and SRS larvae. The major metabolites of pyriproxyfen in houseflies were identified to be 4'-OH-pyriproxyfen and 5"-OH-pyriproxyfen. Cytochrome P450 inhibitors, piperonyl butoxide (PB) and 2-propynyl 2,3,6-trichlorophenyl ether (PTPE), decreased the metabolic rates significantly in all three strains. This study confirmed that microsomal cytochrome P450 monooxygenases play an important role in the pyriproxyfen resistance of the housefly. Furthermore, it suggests that the fat body must be as important as the gut for the metabolism of pyriproxyfen in resistant housefly larvae.
32(0,1,1,2)