Protein Information

ID 47
Name cytochrome P450 (protein family or complex)
Synonyms cytochrome P450; cytochrome P 450; CYP450; CYP 450

Compound Information

ID 1802
Name piperonyl butoxide
CAS 5-[[2-(2-butoxyethoxy)ethoxy]methyl]-6-propyl-1,3-benzodioxole

Reference

PubMed Abstract RScore(About this table)
3030329 Haim N, Nemec J, Roman J, Sinha BK: In vitro metabolism of etoposide (VP-16-213) by liver microsomes and irreversible binding of reactive intermediates to microsomal proteins. Biochem Pharmacol. 1987 Feb 15;36(4):527-36.
We have studied the metabolism of VP-16-213 (etoposide, VP-16), an antitumor agent, by mouse liver microsomes to reactive intermediates and the subsequent covalent binding to microsomal proteins. This metabolism was shown to involve the O-demethylation of VP-16 and resulted in the formation of a 3',4'-dihydroxy derivative (DHVP-16) which was identified by both HPLC and mass spectrometry. The formation of DHVP-16 was cytochrome P-450-mediated as indicated by its dependence on NADPH, its increased production following treatment of mice with phenobarbital, and its marked inhibition by SKF-525A and piperonyl butoxide. Furthermore, DHVP-16 formation required oxygen. Microsomal incubation of VP-16 resulted in an irreversible binding of the drug to the proteins, which was also shown to be cytochrome P-450 dependent. The covalent binding of the VP-16 metabolite (s) was inhibited by DHVP-16 in a dose-dependent fashion, suggesting that the reactive intermediates that bound to proteins were derived from DHVP-16. Electron spin resonance studies indicated that the same semiquinone radical was formed during enzymatic (oxidation or reduction) metabolism of DHVP-16 and the o-quinone derivative of VP-16 (VP-16-Q). VP-16-Q and its semiquinone radical are suggested to be the bioalkylating species.
32(0,1,1,2)