Protein Information

ID 3501
Name MSRA
Synonyms Cytosolic methionine S sulfoxide reductase (Methionine sulfoxide reductase A3); MSRA; Methionine sulfoxide reductase A1; Methionine sulfoxide reductase A2; PMSR; Peptide Met(O) reductase; Peptide methionine sulfoxide reductase; Protein methionine S oxide reductase…

Compound Information

ID 1808
Name sulfoxide
CAS 5-[2-(octylsulfinyl)propyl]-1,3-benzodioxole

Reference

PubMed Abstract RScore(About this table)
17624316 Su Z, Limberis J, Martin RL, Xu R, Kolbe K, Heinemann SH, Hoshi T, Cox BF, Gintant GA: Functional consequences of methionine oxidation of hERG potassium channels. Biochem Pharmacol. 2007 Sep 1;74(5):702-11. Epub 2007 Jun 7.
Reactive species oxidatively modify numerous proteins including ion channels. Oxidative sensitivity of ion channels is often conferred by amino acids containing sulfur atoms, such as cysteine and methionine. Functional consequences of oxidative modification of methionine in human ether a go-go related gene 1 (hERG1), which encodes cardiac I (Kr) channels, are unknown. Here we used chloramine-T (ChT), which preferentially oxidizes methionine, to examine the functional consequences of methionine oxidation of hERG channels stably expressed in a human embryonic kidney cell line (HEK 293) and native hERG channels in a human neuroblastoma cell line (SH-SY5Y). ChT (300 microM) significantly decreased whole-cell hERG current in both HEK 293 and SH-SY5Y cells. In HEK 293 cells, the effects of ChT on hERG current were time- and concentration-dependent, and were markedly attenuated in the presence of enzyme methionine sulfoxide reductase A that specifically repairs oxidized methionine. After treatment with ChT, the channel deactivation upon repolarization to -60 or -100 mV was significantly accelerated. The effect of ChT on channel activation kinetics was voltage-dependent; activation slowed during depolarization to +30 mV but accelerated during depolarization to 0 or -10mV. In contrast, the reversal potential, inactivation kinetics, and voltage-dependence of steady-state inactivation remained unaltered. Our results demonstrate that the redox status of methionine is an important modulator of hERG channel.
1(0,0,0,1)