Protein Information

ID 33
Name ATPase
Synonyms ATP7A; MK; ATPase; Cation transporting ATPase; ATP7A protein; ATPase Cu(2+) transporting alpha polypeptide; Copper pump 1; Copper transporting ATPase 1…

Compound Information

ID 288
Name diafenthiuron
CAS

Reference

PubMed Abstract RScore(About this table)
11695192 Kayser H, Eilinger P: Metabolism of diafenthiuron by microsomal oxidation: procide activation and inactivation as mechanisms contributing to selectivity. Pest Manag Sci. 2001 Oct;57(10):975-80.
The thiourea insecticide/acaricide diafenthiuron represents a biologically inactive propesticide that requires transformation into the active carbodiimide derivative. The carbodiimide inhibits mitochondrial respiration by selective and covalent binding to the proteolipid (8 kDa) of Fo-ATPase in the inner membrane and to porin (30 kDa) in the outer membrane. The thiourea can be activated by light as well as by cytochrome P450 in the insect. To get insight into the enzymatic mechanisms of activation, model in vitro studies were performed using [14C] diafenthiuron and microsomes from various vertebrate livers and from locust Malpighian tubules. Though there was a common set of metabolites, their quantities varies significantly with the species and assay conditions. As a typical product, p-hydroxydiafenthiuron was identified in assay with rat and mouse microsomes. The sulfomonoxide predominated in hen and fish assays, whereas pig and bovine microsomes almost exclusively produced the carbodiimide. The sulfoxide was shown to be a precursor of the carbodiimide. Formation of all metabolites was dependent on the presence of NADPH and active microsomes. The effects of inhibitors and the requirement for NAPDH suggested a role of cytochrome P450-dependent monooxygenase (s) in the formation of both the hydroxylated product and the carbodiimide. FAD-dependent monooxygenases (FMOs) may also be involved in a step following sulfoxidation. These in vitro studies revealed potential mechanisms contributing to biological selectivity of the effects of a pesticide that acts in a non-selective mode at a conserved mitochondrial site.
1(0,0,0,1)