Protein Information

ID 95
Name cholinesterase
Synonyms Acylcholine acylhydrolase; BCHE; BCHE protein; Butyrylcholine esterase; Butyrylcholinesterase; CHE1; Choline esterase II; Cholinesterase…

Compound Information

ID 202
Name chlorpyrifos
CAS

Reference

PubMed Abstract RScore(About this table)
10544056 Das KP, Barone S Jr: Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: is acetylcholinesterase inhibition the site of action?. Toxicol Appl Pharmacol. 1999 Nov 1;160(3):217-30.
Developmental expression of AChE has been associated with neuronal differentiation (P. G. Layer and E. Willbold, Prog. Histochem. Cytochem. 29, 1-94, 1995). In this study we used pheochromocytoma (PC12) cells, a noncholinergic cell line, rich in acetylcholinesterase (AChE) activity, to examine the effects of cholinesterase-inhibiting pesticides on neural differentiation. The experimental paradigm was focused on whether alterations in cholinesterase (ChE) activity by a pesticide or its metabolites would affect neurite outgrowth, a morphological marker of neuronal differentiation. Results indicated that (1) in controls, both total ChE and AChE activities were significantly increased in NGF-primed PC12 cells compared to NGF-unprimed cells, while the basal expression of butyrylcholinesterase (BuChE) activity was much lower (1.3-7% of total ChE activity) in either the presence or the absence of NGF; (2) an increase in AChE activity was highly correlated (r (2) = 0.99) with the extension of neurite outgrowth, suggesting a link between the expression of AChE activity and the elaboration of neurite outgrowth; (3) NGF increased neurite outgrowth in a time- and concentration-dependent manner; and (4) either chlorpyrifos (CPF) or its metabolites (CPF oxon and TCP) inhibited NGF-induced neurite outgrowth (branches per cell, fragments per cell, total neurite outgrowth per cell) in PC12 cells. These data suggest that the expression of AChE activity is associated with the extension of neurite outgrowth. Both enzyme activity and neurite branching were disrupted by CPF oxon; however, CPF and its other metabolite TCP (1 microgram/ml) caused inhibition of neurite outgrowth in the absence of ChE inhibition, suggesting an alternative mechanism (s) may be involved in pesticide-induced inhibition of differentiation.
33(0,1,1,3)