Protein Information

ID 88
Name Acetylcholinesterase
Synonyms ACHE; ACHE protein; AChE; ARACHE; AcChoEase; Acetylcholine acetylhydrolase; Acetylcholinesterase; Acetylcholinesterase isoform E4 E6 variant…

Compound Information

ID 202
Name chlorpyrifos
CAS

Reference

PubMed Abstract RScore(About this table)
11861971 Timchalk C, Nolan RJ, Mendrala AL, Dittenber DA, Brzak KA, Mattsson JL: A Physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans. Toxicol Sci. 2002 Mar;66(1):34-53.
A PBPK/PD model was developed for the organophosphate insecticide chlorpyrifos (CPF) (O,O-diethyl-O-[3,5,6-trichloro-2-pyridyl]-phosphorothioate), and the major metabolites CPF-oxon and 3,5,6-trichloro-2-pyridinol (TCP) in rats and humans. This model integrates target tissue dosimetry and dynamic response (i.e., esterase inhibition) describing uptake, metabolism, and disposition of CPF, CPF-oxon, and TCP and the associated cholinesterase (ChE) inhibition kinetics in blood and tissues following acute and chronic oral and dermal exposure. To facilitate model development, single oral-dose pharmacokinetic studies were conducted in rats (0.5-100 mg/kg) and humans (0.5-2 mg/kg), and the kinetics of CPF, CPF-oxon, and TCP were determined, as well as the extent of blood (plasma/RBC) and brain (rats only) ChE inhibition. In blood, the concentration of analytes followed the order TCP >> CPF >> CPF-oxon; in humans CPF-oxon was not quantifiable. Simulations were compared against experimental data and previously published studies in rats and humans. The model was utilized to quantitatively compare dosimetry and dynamic response between rats and humans over a range of CPF doses. The time course of CPF and TCP in both species was linear over the dose range evaluated, and the model reasonably simulated the dose-dependent inhibition of plasma ChE, RBC acetylcholinesterase (AChE), and brain (rat only) AChE. Model simulations suggest that rats exhibit greater metabolism of CPF to CPF-oxon than humans do, and that the depletion of nontarget B-esterase is associated with a nonlinear, dose-dependent increase in CPF-oxon blood and brain concentration. This CPF PBPK/PD model quantitatively estimates target tissue dosimetry and AChE inhibition and is a strong framework for further organophosphate (OP) model development and for refining a biologically based risk assessment for exposure to CPF under a variety of scenarios.
2(0,0,0,2)