Protein Information

ID 252
Name alpha tubulin
Synonyms Alpha tubulin ubiquitous; Tubulin K alpha 1; Tubulin alpha ubiquitous chain; K alpha 1; K ALPHA 1 protein; alpha tubulin; K alpha 1s; K ALPHA 1 proteins…

Compound Information

ID 202
Name chlorpyrifos
CAS

Reference

PubMed Abstract RScore(About this table)
19631231 Grigoryan H, Lockridge O: Nanoimages show disruption of tubulin polymerization by chlorpyrifos oxon: implications for neurotoxicity. Toxicol Appl Pharmacol. 2009 Oct 15;240(2):143-8. Epub 2009 Jul 22.
Organophosphorus agents cause cognitive deficits and depression in some people. We hypothesize that the mechanism by which organophosphorus agents cause these disorders is by modification of proteins in the brain. One such protein could be tubulin. Tubulin polymerizes to make the microtubules that transport cell components to nerve axons. The goal of the present work was to measure the effect of the organophosphorus agent chlorpyrifos oxon on tubulin polymerization. An additional goal was to identify the amino acids covalently modified by chlorpyrifos oxon in microtubule polymers and to compare them to the amino acids modified in unpolymerized tubulin dimers. Purified bovine tubulin (0.1 mM) was treated with 0.005-0.1 mM chlorpyrifos oxon for 30 min at room temperature and then polymerized by addition of 1 mM GTP to generate microtubules. Microtubules were visualized by atomic force microscopy. Chlorpyrifos oxon-modified residues were identified by tandem ion trap electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry of tryptic peptides. Nanoimaging showed that low concentrations (0.005 and 0.01 mM) of chlorpyrifos oxon yielded short, thin microtubules. A concentration of 0.025 mM stimulated polymerization, while high concentrations (0.05 and 0.1 mM) caused aggregation. Of the 17 tyrosines covalently modified by chlorpyrifos oxon in unpolymerized tubulin dimers, only 2 tyrosines were labeled in polymerized microtubules. The two labeled tyrosines in polymerized tubulin were Tyr 103 in EDAANNYR of alpha tubulin, and Tyr 281 in GSQQYR of beta tubulin. In conclusion, chlorpyrifos oxon binding to tubulin disrupts tubulin polymerization. These results may lead to an understanding of the neurotoxicity of organophosphorus agents.
1(0,0,0,1)