Protein Information

ID 36
Name glutathione S transferase
Synonyms GST class alpha 2; Gst2; GST class alpha; GST class alpha member 2; GST gamma; GSTA 2; GSTA2; GSTA2 2…

Compound Information

ID 117
Name DDT
CAS 1,1′-(2,2,2-trichloroethylidene)bis[4-chlorobenzene]

Reference

PubMed Abstract RScore(About this table)
17633433 Etang J, Manga L, Toto JC, Guillet P, Fondjo E, Chandre F: Spectrum of metabolic-based resistance to DDT and pyrethroids in Anopheles gambiae s.l. populations from Cameroon. J Vector Ecol. 2007 Jun;32(1):123-33.
Some populations of Anopheles gambiae s.l. from Cameroon were reported to develop resistance to DDT or pyrethroids but were free of the kdr mutation "Leucine-Phenylalanine" (Leu-Phe). This study reports on the metabolic activity of non-specific esterases (NSEs), mixed function oxidases (MFOs), and glutathione S-transferases (GSTs), three enzyme systems commonly involved in insecticide resistance. Biochemical assays were performed in DDT or pyrethroid-resistant populations of An. gambiae s.l. from Douala, Mbalmayo, Pitoa, and Simatou neighborhoods. Enzyme activity was compared to the Kisumu-susceptible reference strain using the Mann-Whitney test. Most of the tested samples had elevated NSE activity (P < 0.02). The Douala sample evenly displayed elevated GST activity (P < 0.001), while high MFO level was recorded in the Pitoa sample (P < 0.001). MFO or GST levels were sometimes lower or similar to that of the Kisumu strain. These results suggest metabolic detoxification is a major DDT or pyrethroid resistance mechanism and emphasize the need for further investigations on An. gambiae s.l. resistance mechanisms in Cameroon.
1(0,0,0,1)