Protein Information

ID 47
Name cytochrome P450 (protein family or complex)
Synonyms cytochrome P450; cytochrome P 450; CYP450; CYP 450

Compound Information

ID 262
Name fipronil
CAS

Reference

PubMed Abstract RScore(About this table)
9461846 Bride JM, Cuany A, Amichot M, Brun A, Babault M, Mouel TL, De Sousa G, Rahmani R, Berge JB: Cytochrome P-450 field insecticide tolerance and development of laboratory resistance in grape vine populations of Drosophila melanogaster (Diptera: Drosophilidae). J Econ Entomol. 1997 Dec;90(6):1514-20.
Studies were conducted between 1993 and 1996 using 3 natural grape vine populations, 1 susceptible laboratory strain, and 1 resistant selected strain of Drosophila melanogaster L. In vitro monooxygenase activity (ethoxycoumarine-O-deethylation) (ECOD) was recorded from microsomal fractions of all strains. Results varied over a 6-fold range between susceptible laboratory Canton and resistant selected RDDT strains and over a 2-fold range between the Canton strain and natural populations of flies. Few significant variations of ECOD activity were detected among the natural populations despite many insecticide treatments, but activities were significantly correlated with toxicological tolerance to 5 of the 15 insecticides (deltamethrin, fipronil, chlorpyriphos ethyl, DDT, and diazinon). Moreover, immunoblotting responses of microsomal protein encoded by Cyp6A2 showed that the levels of expression were quantitatively correlated with toxicological tolerance to almost the same group of insecticides (deltamethrin, fipronil, chlorpyriphos ethyl, DDT, fenvalerate, and fenthion). However, the level of CYP6A2 expression in some natural strains (still weakly resistant) was almost comparable with one of the resistant strains. In vivo monooxygenase activity recorded in individual abdomens of flies showed that frequency distributions of ECOD activity in natural populations overlapped those of the resistant and laboratory strains, which were much narrower. Substantial and fast frequency changes (of the narrowness) that obtained in laboratory were related to either the time of rearing of 1 of the natural populations or selecting this population with an insecticide that has a toxicology correlated with both of the monooxygenase signs measured. Perspectives on using the CYP6A2 expression and ECOD activity for detecting a resistance mechanism by cytochrome P450 in field populations are discussed.
2(0,0,0,2)