Protein Information

ID 47
Name cytochrome P450 (protein family or complex)
Synonyms cytochrome P450; cytochrome P 450; CYP450; CYP 450

Compound Information

ID 679
Name fenarimol
CAS α-(2-chlorophenyl)-α-(4-chlorophenyl)-5-pyrimidinemethanol

Reference

PubMed Abstract RScore(About this table)
10775427 Williams DR, Fisher MJ, Rees HH: Characterization of ecdysteroid 26-hydroxylase: an enzyme involved in molting hormone inactivation. Arch Biochem Biophys. 2000 Apr 15;376(2):389-98.
Insect molting hormone (ecdysteroid) inactivation occurs by several routes, including 26-hydroxylation and further oxidation to the 26-oic acids. Thus, the ecdysteroid 26-hydroxylase is a critical enzyme involved in precise regulation of ecdysteroid titers during insect development. Administration of the ecdysteroid agonist, RH-5849 (1,2-dibenzoyl, 1-tert-butyl hydrazone), or 20-hydroxyecdysone to the tobacco hornworm, Manduca sexta, results in induction of ecdysteroid 26-hydroxylase activity in midgut mitochondria and microsomes. The biochemical and kinetic properties of the ecdysteroid 26-hydroxylase were investigated. The mitochondrial enzyme was found to have optimal activity at a pH of 7. 5 in a Hepes or sodium phosphate buffer at 30-37 degrees C. The apparent K (m) of the microsomal 26-hydroxylase for 20-hydroxyecdysone substrate was lower than that of the mitochondrial enzyme for either 20-hydroxyecdysone or ecdysone substrate. The V (max) of the 26-hydroxylase in both subcellular fractions was slightly higher using 20-hydroxyecdysone as substrate compared to ecdysone. Demonstration that activity of the mitochondrial 26-hydroxylase was inhibited by incubation in a CO (or N (2)) atmosphere, taken together with the requirement for reducing cofactor and the efficacy of the P450 inhibitors, ketoconazole and fenarimol, provided strong evidence that the hydroxylase is cytochrome P450-dependent. Indirect evidence suggested that the mitochondrial and microsomal ecdysteroid 26-hydroxylase (s) could exist in a less active dephosphorylated state or more active phosphorylated state. Using Escherichia coli alkaline phosphatase to remove covalently bound phosphate groups, the activity of the 26-hydroxylase was decreased and, conversely, activity was enhanced using a cAMP-dependent protein kinase with appropriate cofactors. In addition, the protein kinase was shown to reactivate the 26-hydroxylase activity in alkaline phosphatase-treated fractions.
31(0,1,1,1)