Protein Information

ID 47
Name cytochrome P450 (protein family or complex)
Synonyms cytochrome P450; cytochrome P 450; CYP450; CYP 450

Compound Information

ID 1470
Name methoxychlor
CAS 1,1′-(2,2,2-trichloroethylidene)bis[4-methoxybenzene]

Reference

PubMed Abstract RScore(About this table)
9266808 Schlenk D, Stresser DM, McCants JC, Nimrod AC, Benson WH: Influence of beta-naphthoflavone and methoxychlor pretreatment on the biotransformation and estrogenic activity of methoxychlor in channel catfish (Ictalurus punctatus). Toxicol Appl Pharmacol. 1997 Aug;145(2):349-56.
The organochlorine pesticide methoxychlor [1,1,1-trichloro-2,2-bis (4-methoxyphenyl) ethane] (MXC) has been classified as a proestrogen in mammals and fish, requiring demethylation prior to eliciting estrogenic activity or binding to the estrogen receptor. While microsomal demethylation occurs readily in the liver of fish, little is known about the enzyme (s) responsible or the effect of cytochrome P450 (CYP) inducers, other than those of CYP1A and CYP2K, on biotransformation. Consequently, male channel catfish were pretreated with MXC or beta-naphthoflavone (BNF), alone and in combination, to determine their effects on CYP protein expression, MXC biotransformation by hepatic microsomes, microsomal protein binding, and MXC estrogenic activity as determined by serum vitellogenin and 17beta-estradiol. Liver microsomes of both treated and untreated mature male catfish catalyzed formation of monodemethylated MXC, bisdemethylated MXC, as well as ring-hydroxylated metabolites. Pretreatment with BNF did not affect MXC metabolite profiles, overall rates of MXC biotransformation, or microsomal proteins recognized by anti-trout CYP2K1, but had the expected effect of inducing CYP1A and associated ethoxyresorufin O-deethylase activity. By contrast, pretreatment with MXC, alone or in combination with BNF, significantly reduced rates of MXC biotransformation and binding to liver microsomal protein. MXC/BNF cotreatment followed by MXC significantly induced serum vitellogenin, whereas MXC treatment alone led to a nonsignificant increase in vitellogenin and a significant increase in serum 17beta-estradiol. Thus, estrogenic activity elicited by cotreatment with MXC and BNF can occur despite diminished capacity of liver microsomes to catalyze formation of estrogenic demethylated metabolites or metabolites that bind microsomal protein. Possible mechanisms of MXC-induced attenuation of CYP-dependent metabolism are discussed.
1(0,0,0,1)