Protein Information

ID 470
Name alpha ketoglutarate dehydrogenase
Synonyms 2 ketoglutarate dehydrogenase deficiency; 2 oxoglutarate dehydrogenase E1 component; AKGDH; Alpha KGD deficiency; Alpha ketoglutarate dehydrogenase; Alpha ketoglutarate dehydrogenase deficiency; E1K; OGDC…

Compound Information

ID 955
Name TCA
CAS 2,2,2-trichloroacetic acid

Reference

PubMed Abstract RScore(About this table)
16206171 Waagepetersen HS, Hansen GH, Fenger K, Lindsay JG, Gibson G, Schousboe A: Cellular mitochondrial heterogeneity in cultured astrocytes as demonstrated by immunogold labeling of alpha-ketoglutarate dehydrogenase. Glia. 2006 Jan 15;53(2):225-31.
In brain cells, various metabolites and metabolic pathways, largely of mitochondrial origin, have been shown to be compartmentalized. Attention has therefore been focused on the possible existence of mitochondrial heterogeneity in the brain at the cellular level. To determine whether mitochondria in cultured cortical and cerebellar astrocytes are heterogeneous at the single cell level, immunogold electron microscopy and an antibody against the alpha-ketoglutarate dehydrogenase component of the alpha-ketoglutarate dehydrogenase complex, a marker enzyme for the tricarboxylic acid (TCA) cycle, were employed. The number of gold particles was counted in the mitochondria of 36 and 42 cells from cultured cerebellar and cortical astrocytes, respectively. A test for random distribution (Poisson distribution) of mitochondria according to the number of gold particles was subsequently performed for every one of the 36 and 42 cells as the ratio variance/mean (= index of dispersion). This should be approximately distributed as chi2/degrees of freedom (df) = n - 1, n = number of mitochondria), if the observations obeyed a Poisson distribution. For 26 of the 36 (cerebellar astrocytes) distributions and for 28 of the 42 (cortical astrocytes) distributions a random distribution had to be rejected. These findings therefore strongly indicate that alpha-ketoglutarate dehydrogenase is heterogeneously distributed in mitochondria within individual astrocytes originating either from cerebellum or cerebral cortex. In conclusion, this study underlines the probability that mitochondrial heterogeneity at the single cell level might be extended to involve other metabolic pathways and metabolites.
3(0,0,0,3)