Protein Information

ID 3086
Name apical sodium dependent bile acid transporter
Synonyms ASBT; Apical sodium dependent bile acid transporter; IBAT; ISBT; Ileal Na(+)/bile acid cotransporter; Ileal Sodium/Bile Salt Transporter; Ileal sodium dependent bile acid transporter; Ileal sodium/bile acid cotransporter…

Compound Information

ID 955
Name TCA
CAS 2,2,2-trichloroacetic acid

Reference

PubMed Abstract RScore(About this table)
16387497 Ray A, Banerjee A, Chang C, Khantwal CM, Swaan PW: Design of novel synthetic MTS conjugates of bile acids for site-directed sulfhydryl labeling of cysteine residues in bile acid binding and transporting proteins. Bioorg Med Chem Lett. 2006 Mar 15;16(6):1473-6. Epub 2006 Jan 4.
The purpose of this study was to design bile acid-containing methanethiosulfonate (MTS) agents with appropriate physical attributes to effectively modify the cysteine residues present in the human apical sodium-dependent bile acid transporter. Four physical properties including surface area, molecular volume, ClogP, and dipole moment were calculated for each semiempirically optimized structure of MTS compounds. The specificity of the synthesized bile acid-MTS conjugate toward native cysteines and putative bile acid interacting domains of hASBT was supported by the effect of 1mM cholyl-MTS, cholylglycyl-MTS, and 3-amino-cholyl-MTS on uptake activity, that displayed a significant decrease in TCA affinity (K (T)=69.9+/-4.5, 69.01+/-6.2, and 63.24+/-0.26 microM and J (max)=35.8+/-0.3, 24.03+/-1.22, 46.49+/-5.01 pmol mg protein min (-1), respectively). These compounds prove to be effective tools in probing the structural and functional effects of cysteine residues in bile acid binding and transporting proteins.
1(0,0,0,1)