Protein Information

ID 196
Name cathepsin D
Synonyms CATD; CLN10; CPSD; CTSD; Cathepsin D; Cathepsin D precursor; cathepsin D (lysosomal aspartyl peptidase); cathepsin D (lysosomal aspartyl protease)…

Compound Information

ID 955
Name TCA
CAS 2,2,2-trichloroacetic acid

Reference

PubMed Abstract RScore(About this table)
19688284 Abdel-Hamid NM: Premalignant variations in extracellular matrix composition in chemically induced hepatocellular carcinoma in rats. J Membr Biol. 2009 Aug;230(3):155-62. Epub 2009 Aug 18.
Chemical composition of extracellular matrix (ECM) plays a pivotal role in cellular and tissue development, regeneration, and differentiation. It also plays a key role in pathogenesis of hepatocellular carcinoma (HCC). This study explored premalignant changes in the liver tissue content of collagen (as hydroxyproline, HP), total glycosaminoglycans (TGAGs), free glucosamine (FGA), total sialic acid (TSA), lysosomal membrane integrity variations (calculated as total and free cathepsin D activities), and liver histology. Serum alfa-fetoprotein (AFP) level was used as an early marker for HCC in two groups of Wistar rats. One group of rats served as control and was provided normal saline orally. The other group was provided trichloroacetic acid (TCA) as 0.5 g/kg/day for five consecutive days by oral gavage. Animals were killed before tumor development. The treatment revealed dysplastic changes in addition to microsteatosis (fatty changes). Both sinusoids and the portal vein among dysplastic cells were dilated and congested. These dysplastic foci are believed to be premalignant and may be precancerous lesions. The following things were observed: a highly significant increase in serum AFP (as a key marker for HCC), a significant decrease in HP and TSA, a significant increase in FGA, nonsignificant decrease in TGAGs, significant up-regulation of free cathepsin D, nonsignificant decrease in total cathepsin D activities, and destabilization of lysosomal membrane integrity. Down-regulation of HP, TSA, and TGAGs seems to be a prerequisite for cancer development. This might be stimulated by up-regulation of free cathepsin D activity. Perhaps tissue fibrosis is not a condition for developing HCC because collagen was significantly depressed. Up-regulated FGA could be assumed to be a defense mechanism against TCA-induced proteolysis of membrane proteins because it is frequently reported to be of value in cancer chemotherapy. Studied ECM perturbations can be assumed as preliminary changes during chemical hepatocarcinogenesis at the tissue level. Prospective studies on blood levels of cathepsins, TGAGs, and individual ECM variables such as TSA, FGA, and Hp in patients at risk for HCC, performed in parallel with assessments of AFP, may provide a cost-effective way to find new links between tissue changes and circulation that would permit early prediction of disease. It may also provide a way to monitor HCC and compensate for the missed peak AFP values.
3(0,0,0,3)