Protein Information

ID 33
Name ATPase
Synonyms ATP7A; MK; ATPase; Cation transporting ATPase; ATP7A protein; ATPase Cu(2+) transporting alpha polypeptide; Copper pump 1; Copper transporting ATPase 1…

Compound Information

ID 1713
Name gibberellins
CAS gibberellins

Reference

PubMed Abstract RScore(About this table)
9107028 Chen X, Chang M, Wang B, Wu B: Cloning of a Ca (2+)-ATPase gene and the role of cytosolic Ca2+ in the gibberellin-dependent signaling pathway in aleurone cells. Plant J. 1997 Mar;11(3):363-71.
The ultimate goal of this investigation was to identify intermediary steps in the gibberellin (GA)-dependent signaling pathway in rice aleurone cells. By using a differential display approach, a number of putative GA-responsive genes were isolated. One of them, a GA-responsive Ca (2+)-ATPase gene, was identified and partially characterized. A genomic clone and a cDNA clone were isolated and sequenced. The deduced amino acid sequence showed that this protein resembles an endoplasmic reticulum membrane Ca (2+)-ATPase. In a transient assay in rice aleurone cells, expression of the introduced Ca (2+)-ATPase cDNA bypassed the GA requirement for stimulating the expression of a major target gene, the alpha-amylase c gene (Osamy-c). This result suggests that GA-dependent expression of this Ca (2+)-ATPase gene (OsCa-atpase) plays an important role in the GA-dependent signal-transduction pathway. To investigate the possible involvement of other proteins and genes that may affect the intracellular Ca2+ level, compounds which can block different putative steps in the signal-transduction pathway were introduced into rice aleurone cells, and then the level of the OsCa-atpase transcript or the Osamy-c transcript was monitored. In the presence of GA, the rice Ca (2+)-ATPase and the Ca2+ channels appeared to co-regulate the local concentration of cytosolic Ca2+. The release of Ca2+ from the internal stores to the cytoplasm was presumably initiated by inositol-1,4,5-triphosphate which reached a peak level within 25 min after GA induction. As a second messenger, Ca2+ binds to calmodulin (CaM), and the Ca2+/CaM complex regulates the cytosolic Ca2+ by affecting expression of the OsCa-atpase. Finally, a working model is proposed for the GA-dependent signaling pathway in aleurone cells.
8(0,0,0,8)