17158254 |
Nyasae L, Bustos R, Braiterman L, Eipper B, Hubbard A: Dynamics of endogenous ATP7A (Menkes protein) in intestinal epithelial cells: copper-dependent redistribution between two intracellular sites. Am J Physiol Gastrointest Liver Physiol. 2007 Apr;292(4):G1181-94. Epub 2006 Dec 7. We report for the first time on the copper-dependent behavior of endogenous ATP7A in two types of polarized intestinal epithelia, rat enterocytes in vivo and filter-grown Caco-2 cells, an accepted in vitro model of human small intestine. We used high-resolution, confocal immunofluorescence combined with quantitative cell surface biotinylation and found that the vast majority of endogenous ATP7A was localized intracellularly under all copper conditions. In copper-depleted cells, virtually all of the ATP7A localized to a post-TGN compartment, with <3% of the total protein detectable at the basolateral cell surface. When copper levels were elevated, ATP7A dispersed to the cell periphery in punctae whose pattern did not overlap with the steady-state distributions of post-Golgi, endosomal, or basolateral membrane markers; only approximately 8-10% of the recovered ATP7A was detected at the basolateral cell surface. These results raise several questions regarding prevailing models of ATP7A dynamics and the mechanism of copper efflux. |
5(0,0,0,5) |