Protein Information

ID 33
Name ATPase
Synonyms ATP7A; MK; ATPase; Cation transporting ATPase; ATP7A protein; ATPase Cu(2+) transporting alpha polypeptide; Copper pump 1; Copper transporting ATPase 1…

Compound Information

ID 336
Name strychnine
CAS strychnidin-10-one

Reference

PubMed Abstract RScore(About this table)
8770653 Baker RE, Ballantyne D, Bingmann D, Jones D, Widman G: Rhythm generation in organotypic medullary cultures of newborn rats. Int J Dev Neurosci. 1995 Dec;13(8):799-809.
Organotypic transverse medullary slices (obex level) from six-day-old rats, cultured for two to four weeks in chemically defined medium contained rhythmically discharging neurones which were activated by CO2 and H+. The mechanisms underlying this rhythmicity and the spread of excitation and synaptic transmission within this organotypic tissue were examined by modifying the composition of the external solution. Our findings showed that (1) Exposure to tetrodotoxin (0.2 microM) or to high magnesium (6 mM) and low calcium (0.2 mM) concentrations abolished periodic activity. (2) Neither the blockade of GABAergic potentials with bicuculline methiodide (200 microM) and/or hydroxysaclofen (200 microM) nor the blockade of glycinergic potentials with strychnine hydrochloride (100 microM) abolished rhythmicity. (3) While atropine sulphate (5 microM) was ineffective in modulating periodic discharges nicotine (100 microM) - like CO2-shortened the intervals between the periodic events; hexamethonium (50-100 microM) reduced both periodic and aperiodic activity. (4) Exposure to the NMDA antagonist 2-aminophosphonovaleric acid (50 microM) suppressed periodic events only transiently. In the presence of 2-aminophosphonovaleric acid rhythmicity recovered. However, the AMPA-antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (10-50 microM), abolished periodic activity reversibly within less than 5 min. When 6-cyano-7-nitroquinoxaline-2,3-dione and nicotine were administered simultaneously periodic events persisted for up to 10 min. These findings indicate that synaptic excitatory drive is a prerequisite for the generation of rhythmic discharges of medullary neurones in this preparation. This drive may activate voltage-dependent channels or it may facilitate endogenous cellular mechanisms which initiate oscillations of intracellular calcium concentration. To test the latter possibility (5) calcium antagonists were added to the bath saline. The organic calcium antagonists verapamil and flunarizine (50-100 microM each) and the inorganic calcium antagonists cobalt (2 mM) and magnesium (6 mM) suppressed periodic activity and abolished or weakened the chemosensitivity towards CO2/acidosis. (6) Dantrolene (10 microM). an inhibitor of intracellular calcium release decreased the periodicity, while thapsigargin (2 microM) which blocks endoplasmic Ca (2+)-ATPase, transiently accelerated the occurrence of periodic events. (7) Oscillations of intracellular free calcium concentrations in Fura-2 AM-loaded cells were weakened or abolished by cobalt (2 mM). The results of (5)-(7) indicate that transmembrane calcium fluxes as well as intracellular Ca (2+)-release and -clearance mechanisms are a prerequisite for intracellular free calcium oscillations which may be important in the generation of rhythmic discharges in medullary neurones.
1(0,0,0,1)