Protein Information

ID 33
Name ATPase
Synonyms ATP7A; MK; ATPase; Cation transporting ATPase; ATP7A protein; ATPase Cu(2+) transporting alpha polypeptide; Copper pump 1; Copper transporting ATPase 1…

Compound Information

ID 343
Name cresol
CAS methylphenol

Reference

PubMed Abstract RScore(About this table)
2965700 Taylor KA, Mullner N, Pikula S, Dux L, Peracchia C, Varga S, Martonosi A: Electron microscope observations on Ca2+-ATPase microcrystals in detergent-solubilized sarcoplasmic reticulum. J Biol Chem. 1988 Apr 15;263(11):5287-94.
Crystalline arrays of Ca2+-ATPase molecules develop in detergent-solubilized sarcoplasmic reticulum during incubation for several weeks at 2 degrees C under nitrogen in a medium of 0.1 M KCl, 10 mM K-3-(N-morpholino) propanesulfonate, pH 6.0, 3 mM MgCl2, 20 mM CaCl2, 20% glycerol, 3 mM NaN3, 5 mM dithiothreitol, 25 IU/ml Trasylol, 2 micrograms/ml 1,6-di-tert-butyl-p-cresol, 2 mg/ml protein, and 2-4 mg of detergent/mg of protein. Electron microscopy of sectioned, negatively stained, freeze-fractured, and frozen-hydrated Ca2+-ATPase crystals indicates that they consist of stacked lamellar arrays of Ca2+-ATPase molecules. Prominent periodicities of ATPase molecules within the lamellae arise from a centered rectangular lattice of dimensions 164 x 55.5 A. The association of lamellae into three-dimensional stacks is assumed to involve interactions between the exposed hydrophilic headgroups of ATPase molecules, that is promoted by glycerol and 20 mM Ca2+. Similar Ca2+-induced crystals were observed with purified or purified and delipidated Ca2+-ATPase preparations at lower detergent/protein ratios. Cross-linking of Ca2+-ATPase crystals with glutaraldehyde protects the structure against conditions such as low Ca2+, high pH, elevated temperature, SH group reagents, high concentration of detergents, and removal of phospholipids by extraction with organic solvents that disrupt unfixed preparations.
7(0,0,0,7)