Name | CYP3A4 |
---|---|
Synonyms | CP33; CYP3; HLP; CYP3A; CP34; CYP 3A4; CYP 3; CYP3A3… |
Name | acrolein |
---|---|
CAS | 2-propenal |
PubMed | Abstract | RScore(About this table) | |
---|---|---|---|
19103281 | Park D, Jeon JH, Shin S, Joo SS, Kang DH, Moon SH, Jang MJ, Cho YM, Kim JW, Ji HJ, Ahn B, Oh KW, Kim YB: Green tea extract increases cyclophosphamide-induced teratogenesis by modulating the expression of cytochrome P-450 mRNA. Reprod Toxicol. 2009 Jan;27(1):79-84. Epub 2008 Dec 3. Moreover, repeated treatment with GTE greatly increased mRNA expression and activity of hepatic cytochrome P-450 (CYP) 2B, which metabolizes cyclophosphamide into teratogenic acrolein and cytotoxic phosphoramide mustard, while reducing CYP3A expression (a detoxifying enzyme). |
82(1,1,1,2) | Details |
9622079 | Egorin MJ, Rosen DM, Wolff JH, Callery PS, Musser SM, Eiseman JL: Metabolism of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) by murine and human hepatic preparations. Cancer Res. 1998 Jun 1;58(11):2385-96. Incubation of 17AAG with cloned CYP3A4 produced metabolites 4 and 6. These data have implications with regard to preclinical toxicology and activity testing of 17AAG as well as its proposed clinical development because: (a) production of 17AG requires concomitant production of acrolein from the cleaved allyl moiety; and (b) 17AG, which was not metabolized by microsomes, has been described as being as active as 17AAG in decreasing cellular p185erbB2. |
2(0,0,0,2) | Details |
19017849 | Storme T, Deroussent A, Mercier L, Prost E, Re M, Munier F, Martens T, Bourget P, Vassal G, Royer J, Paci A: New ifosfamide analogs designed for lower associated neurotoxicity and nephrotoxicity with modified alkylating kinetics leading to enhanced in vitro anticancer activity. J Pharmacol Exp Ther. 2009 Feb;328(2):598-609. Epub 2008 Nov 18. Isophosphoramide mustard is the bisalkylating active metabolite, and acrolein is a urotoxic side product. Metabolite determinations of the dimethyl-ifosfamide analogs were performed using liquid chromatography and tandem mass spectrometry after in vitro biotransformation by drug-induced rat liver microsomes and human microsomes expressing the main CYP3A4 and minor CYP2B6 enzymes. |
1(0,0,0,1) | Details |