Protein Information

ID 318
Name Potassium channel (protein family or complex)
Synonyms Potassium channel

Compound Information

ID 615
Name sodium azide
CAS sodium azide

Reference

PubMed Abstract RScore(About this table)
9603910 Branstrom R, Efendic S, Berggren PO, Larsson O: Direct inhibition of the pancreatic beta-cell ATP-regulated potassium channel by alpha-ketoisocaproate. J Biol Chem. 1998 Jun 5;273(23):14113-8.
The ATP-regulated potassium (KATP) channel plays an essential role in the control of insulin release from the pancreatic beta-cell. In the present study we have used the patch-clamp technique to study the direct effects of alpha-ketoisocaproate on the KATP channel in isolated patches and intact pancreatic beta-cells. In excised inside-out patches, the activity of the KATP channel was dose-dependently inhibited by alpha-ketoisocaproate, half-maximal concentration being approximately 8 mM. The blocking effect of alpha-ketoisocaproate was fully reversible. Stimulation of channel activity by the addition of ATP/ADP (ratio 1) did not counteract the inhibitory effect of alpha-ketoisocaproate. In the presence of the metabolic inhibitor sodium azide, alpha-ketoisocaproate was still able to inhibit single channel activity in excised patches and to block whole cell KATP currents in intact cells. No effect of alpha-ketoisocaproate could be obtained on either the large or the small conductance Ca2+-regulated K+ channel. Enzymatic treatment of the patches with trypsin prevented the inhibitory effect of alpha-ketoisocaproate. Based on these observations, it is unlikely that the blocking effect of alpha-ketoisocaproate is due to an unspecific effect on K+ channel pores. Leucine, the precursor of alpha-ketoisocaproate, did not affect KATP channel activity in excised patches. Our findings are compatible with the view that alpha-ketoisocaproate not only affects the beta-cell stimulus secretion coupling by generation of ATP but also by direct inhibition of the KATP channel.
1(0,0,0,1)