Protein Information

ID 358
Name complex I
Synonyms 39kD; CI 39kD; Complex I; Complex I 39kD; NADH dehydrogenase (ubiquinone) Fe S protein 2 like; NADH ubiquinone oxidoreductase 39 kDa subunit mitochondrial; NADH ubiquinone oxidoreductase 39 kDa subunit; NDUFA 9…

Compound Information

ID 615
Name sodium azide
CAS sodium azide

Reference

PubMed Abstract RScore(About this table)
11569921 Ishiguro H, Yasuda K, Ishii N, Ihara K, Ohkubo T, Hiyoshi M, Ono K, Senoo-Matsuda N, Shinohara O, Yosshii F, Murakami M, Hartman PS, Tsuda M: Enhancement of oxidative damage to cultured cells and Caenorhabditis elegans by mitochondrial electron transport inhibitors. IUBMB Life. 2001 Apr;51(4):263-8.
The mechanisms that lead to mitochondrial damage under oxidative stress conditions were examined in primary and cultured cells as well as in the nematode Caenorhabditis elegans (C. elegans) treated simultaneously with electron transport inhibitors and oxygen gas. Oxygen loading enhanced the damage of PC 12 cells by thenoyltrifluoroacetone (TTFA, a complex II inhibitor), but did not by rotenone (a complex I inhibitor), antimycin (a complex III inhibitor), and sodium azide (a complex IV inhibitor). In primary hepatocytes, the enhancement was observed with the addition of sodium azide and rotenone, but not by TTFA or antimycin. In the nematode, only rotenone and TTFA enhanced the sensitivity under hyperoxia. These results demonstrate that highly specific inhibitors of electron transport can induce oxygen hypersensitivity in cell levels such as PC 12 cells and primary hepatocytes, and animal level of C. elegans. In addition the cell damage is different dependent on cell type and organism.
0(0,0,0,0)