8769983 |
Amlal H, Legoff C, Vernimmen C, Paillard M, Bichara M: Na (+)-K+(NH4+)-2Cl- cotransport in medullary thick ascending limb: control by PKA, PKC, and 20-HETE. Am J Physiol. 1996 Aug;271(2 Pt 1):C455-63. Cell pH was monitored in suspensions of medullary thick ascending limbs (MTALs) of rat kidney to determine possible effects of various transduction pathways on apical Na (+)-K+ (NH4+)-2Cl- cotransport, the activity of which was measured as the bumetanide-sensitive component of cell acidification caused by abrupt exposure to 4 mM NH4Cl. 8-Bromoadenosine 3',5'-cyclic monophosphate stimulated cotransport activity through activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA), since the cAMP effect was abolished by N-[2-(p- bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide (H-89); stimulation by cAMP (P < 0.02) was observed even when other Na+, Cl-, and K+ carriers were blocked by ouabain, diphenylamine-2-carboxylate, and barium, which indicates that cotransport was directly affected by PKA. Phorbol 12,13-dibutyrate also stimulated cotransport activity (P < 0.03), which was abolished by protein kinase C (PKC) blockade by staurosporine. In contrast, cotransport activity was reduced (P < 0.001) by arachidonic acid or 20-hydroxyeicosatetraenoic acid (20-HETE), as well as by an ionomycin-induced rise in cytosolic Ca2+ ([Ca2+] i). Inhibition by arachidonic acid or ionomycin was abolished by econazole and SKF-525A that inhibit cytochrome P-450-dependent monoxygenase, which produces 20-HETE from arachidonic acid in the MTAL, and the ionomycin effect was prevented when phospholipase A2 (PLA2) was blocked by 4-bromophenacyl bromide or oleyloxyethyl phosphorylcholine. The results demonstrate that MTAL apical Na (+)-K+(NH4+)-2Cl- cotransport is stimulated by PKA and PKC and inhibited by 20-HETE that may be produced after a rise in [Ca2+] i through PLA2 activation. |
31(0,1,1,1) |