10591528 |
Sharp RE, Moser CC, Gibney BR, Dutton PL: Primary steps in the energy conversion reaction of the cytochrome bc1 complex Qo site. J Bioenerg Biomembr. 1999 Jun;31(3):225-33. The primary energy conversion (Qo) site of the cytochrome bc1 complex is flanked by both high- and low-potential redox cofactors, the [2Fe-2S] cluster and cytochrome bL, respectively. From the sensitivity of the reduced [2Fe-2S] cluster electron paramagnetic resonance (EPR) spectral g (x)-band and line shape to the degree and type of Qo site occupants, we have proposed a double-occupancy model for the Qo site by ubiquinone in Rhodobacter capsulatus membrane vesicles containing the cytochrome bc1 complex. Biophysical and biochemical experiments have confirmed the double occupancy model and from a combination of these results and the available cytochrome bc1 crystal structures we suggest that the two ubiquinone molecules in the Qo site serve distinct catalytic roles. We propose that the strongly bound ubiquinone, termed Qos, is close to the [2Fe-2S] cluster, where it remains tightly associated with the Qo site during turnover, serving as a catalytic cofactor; and the weaker bound ubiquinone, Qow, is distal to the [2Fe-2S] cluster and can exchange with the membrane Qpool on a time scale much faster than the turnover, acting as the substrate. The crystallographic data demonstrates that the FeS subunit can adopt different positions. Our own observations show that the equilibrium position of the reduced FeS subunit is proximal to the Qo site. On the basis of this, we also report preliminary results modeling the electron transfer reactions that can occur in the cytochrome bc1 complex and show that because of the strong distance dependence of electron transfer, significant movement of the FeS subunit must occur in order for the complex to be able to turn over at the experimental observed rates. |
5(0,0,0,5) |