16859673 |
Valero MS, Garay RP, Gros P, Alda JO: Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and Na-K-Cl cotransporter NKCC1 isoform mediate the vasorelaxant action of genistein in isolated rat aorta. Eur J Pharmacol. 2006 Aug 21;544(1-3):126-31. Epub 2006 Jun 28. The soy phytoestrogen genistein is a potent vasorelaxant, but its mechanism of action is poorly understood. Here, we used endothelium-denuded rat aorta to investigate the role of the cyclic AMP (cAMP)-activated, cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, and its associated Na-K-Cl cotransporter NKCC1. Isolated, endothelium-denuded rat aorta was contracted with phenylephrine 1 microM, and the vasorelaxant responses to genistein were investigated under conditions where CFTR was inhibited by DPC (diphenylamine-2-carboxylic acid) or glibenclamide (n=6 for compound). Both compounds fully antagonized the vasorelaxant responses to genistein, with IC50=57+/-18 microM and 42+/-11 microM for DPC and glibenclamide respectively. H-89, a selective protein kinase A (PKA) inhibitor, blocked the vasorelaxant responses to genistein. Finally, the NKCC1 inhibitor, bumetanide fully antagonized the vasorelaxant responses to genistein against phenylephrine- or KCl-induced contractions, with IC50=2.0+/-0.2 microM and 1.6+/-0.5 microM, respectively (n=6 for condition). These results strongly suggest that CFTR opening is involved in the vasorelaxant action of genistein, and that cAMP-dependent CFTR phosphorylation and chloride entry via the NKCC1 cotransporter are required for genistein action. |
4(0,0,0,4) |