20339924 |
Das S, Pan D, Bera AK, Rana T, Bhattacharya D, Bandyapadyay S, De S, Sreevatsava V, Bhattacharya S, Das SK, Bandyopadhayay S: Sodium arsenite mediated immuno-disruption through alteration of transcription profile of cytokines in chicken splenocytes under in vitro system. Mol Biol Rep. 2010 Mar 26. Arsenic is a ubiquitously found metalloid that commonly contaminates drinking water and agricultural food. To understand the ecotoxicological effects of arsenic in environment, it is essential to ameliorate the deleterious effects on human and animal health, particularly on the immune response. We investigated the effects of inorganic arsenic (iAs) on the immune response of chicken splenocytes. Both 1 and 10 mM concentrations of sodium arsenite treatment significantly reduced (P < 0.001) splenocyte proliferation and phagocytic activity compared to concanavalin A (ConA) stimulated cells at 24, 48 and 72 h of incubation. Nitrous oxide (NO) production was significantly higher (P < 0.001) at 24 h and subsequently declined in the higher dose group, while there was a gradual decline from 24 to 72 h in the lower dose group. Comparison of two different concentration of arsenic treatment also revealed time dependent differences. Relative quantification of expression of IFNgamma and IL2 revealed that both genes were significantly down regulated (P < 0.001) at both concentrations at each time point. iNOS gene was rapidly down regulated in splenocytes at 24 h at the high doses of As treated splenocyte, a gradual decreasing trend at low doses. Down regulation of IL-2 gene expression in response to As was further evidenced by a significant reduction (P < 0.001) in the release of IL-2 into the splenocyte culture medium. We suggest that arsenic, a potent immunotoxic agent, modulates non-specific immune responses and alters the expression of cytokines in a dose and time dependent manner. |
1(0,0,0,1) |