Protein Information

ID 36
Name glutathione S transferase
Synonyms GST class alpha 2; Gst2; GST class alpha; GST class alpha member 2; GST gamma; GSTA 2; GSTA2; GSTA2 2…

Compound Information

ID 813
Name alachlor
CAS

Reference

PubMed Abstract RScore(About this table)
16534956 Zablotowicz RM, Hoagland RE, Locke MA, Hickey WJ: Glutathione-S-Transferase Activity and Metabolism of Glutathione Conjugates by Rhizosphere Bacteria. Appl Environ Microbiol. 1995 Mar;61(3):1054-1060.
Glutathione-S-transferase (GST) activity was determined in 36 species of rhizosphere bacteria with the substrate 1-chloro-2,4-dinitrobenzene (CDNB) and in 18 strains with the herbicide alachlor. Highest levels of CDNB-GST activity (60 to 222 nmol (middot) h (sup-1) (middot) mg (sup-1)) were found in gram-negative bacteria: Enterobacter cloacae, Citrobacter diversus, Klebsiella planticola, Pseudomonas cepacia, Pseudomonas fluorescens, Pseudomonas putida, and Xanthomonas campestris. There was very low CDNB-GST activity in the gram-positive strains. Rapid metabolism of CDNB-glutathione conjugates, attributable to high levels of (gamma)-glutamyltranspeptidase, also occurred in the gram-negative bacteria, especially pseudomonads. Alachlor-GST activity detected in cell extracts and whole-cell suspensions of some strains of the families Enterobacteriaceae and Pseudomonaceae was 50- to 100-fold lower than CDNB-GST activity (0.5 to 2.5 nmol (middot) h (sup-1) (middot) mg (sup-1)) and was, for the most part, constitutive. The glutathione-alachlor conjugate was rarely detected. Cysteineglycine and/or cysteine conjugates were the major products of alachlor-GST metabolism. Whole-cell suspensions of certain Pseudomonas spp. dechlorinated from 20 to 75% of 100 (mu) M alachlor in 24 h. Results indicate that rhizosphere bacteria, especially fluorescent pseudomonads, may play an important role in the degradation of xenobiotics such as alachlor via GST-mediated reactions.
32(0,1,1,2)