12198002 |
Pizarro F, Olivares M, Hertrampf E, Mazariegos DI, Arredondo M, Letelier A, Gidi V: Iron bis-glycine chelate competes for the nonheme-iron absorption pathway. Am J Clin Nutr. 2002 Sep;76(3):577-81. BACKGROUND: The enterocytic absorption pathway of the food fortificant iron bis-glycine chelate has been the subject of controversy because it is not clear whether that substance uses the classic nonheme-iron absorption pathway or a pathway similar to that of heme absorption. OBJECTIVE: The objective was to study the absorption pathway of iron bis-glycine chelate in human subjects. DESIGN: Eighty-five healthy adult women were selected to participate in 1 of 6 iron-absorption studies. Study A involved the measurement of the dose-response curve of the absorption of ferrous sulfate (through a nonheme-iron absorption pathway); study B involved the competition of iron bis-glycine chelate with ferrous sulfate for the nonheme-iron absorption pathway; study C involved the measurement of the dose-response curve of heme-iron absorption; study D involved the competition of iron bis-glycine chelate with hemoglobin for the heme-iron absorption pathway; and studies E and F were the same as studies A and B, except that the iron bis-glycine chelate was encapsulated in enteric gelatin capsules so that it would not be processed in the stomach. RESULTS: Iron from the bis-glycine chelate competed with ferrous sulfate for the nonheme-iron absorption pathway. Iron from the bis-glycine chelate also competed with ferrous sulfate for absorption when liberated directly into the intestinal lumen. Iron from the bis-glycine chelate did not compete with heme iron for the heme-iron absorption pathway. CONCLUSION: The iron from iron bis-glycine chelate delivered at the level of the stomach or duodenum becomes part of the nonheme-iron pool and is absorbed as such. |
0(0,0,0,0) |