Protein Information

ID 1293
Name annexin V
Synonyms ANX 5; PP4; ENX2; ANX5; ANXA 5; ANXA5; Anchorin CII; Annexin 5…

Compound Information

ID 983
Name DMPA
CAS

Reference

PubMed Abstract RScore(About this table)
9888820 Wu F, Flach CR, Seaton BA, Mealy TR, Mendelsohn R: Stability of annexin V in ternary complexes with Ca2+ and anionic phospholipids: IR studies of monolayer and bulk phases. Biochemistry. 1999 Jan 12;38(2):792-9.
Annexin V (AxV) is a member of a family of proteins that exhibit functionally relevant Ca2+-dependent binding to anionic phospholipid membranes. Protein structure and stability as a function of Ca2+ and phospholipids was studied by bulk phase infrared (IR) spectroscopy and by IR reflection-absorption spectroscopy (IRRAS) of monolayers in situ at the air/water (A/W) interface. Bulk phase experiments revealed that AxV undergoes an irreversible thermal denaturation at approximately 45-50 degreesC, as shown by the appearance of amide I bands at 1617 and 1682 cm-1. However, some native secondary structure is retained, even at 60 degreesC, consistent with a partially unfolded "molten globule" state. Formation of the Ca2+/phospholipid/protein ternary complex significantly protects the protein from thermal denaturation as compared to AxV alone, Ca2+/AxV, or lipid/AxV mixtures. Stabilization of AxV secondary structure by a DMPA monolayer in the presence of Ca2+ was also observed by IRRAS. Spectra of an adsorbed AxV film in the presence or absence of Ca2+ showed a 10 cm-1 shift in the amide I mode, corresponding to loss of ordered structure at the A/W interface. In both the bulk phase and IRRAS experiments, protection against H--> D exchange in AxV was enhanced only in the ternary complex. The combined data suggest that the secondary structure of AxV is strongly affected by the Ca2+/membrane component of the ternary complex whereas lipid conformational order is unchanged by protein.
2(0,0,0,2)