Protein Information

ID 8
Name superoxide dismutase
Synonyms IPO B; Indophenoloxidase B; MNSOD; Manganese superoxide dismutase; Manganese containing superoxide dismutase; Mangano superoxide dismutase; Mn superoxide dismutase; Mn SOD…

Compound Information

ID 1388
Name sodium fluoride
CAS sodium fluoride (NaF)

Reference

PubMed Abstract RScore(About this table)
10393342 Yamano S, Sako Y, Nomura N, Maruyama T: A cambialistic SOD in a strictly aerobic hyperthermophilic archaeon, Aeropyrum pernix. J Biochem. 1999 Jul;126(1):218-25.
The superoxide dismutase (SOD) gene of Aeropyrum pernix, a strictly aerobic hyperthermophilic archaeon, was cloned and expressed in Escherichia coli, and its gene product was characterized. The molecular mass of the protein, based on the deduced amino acid sequence, was 24.6 kDa. The sequence showed overall similarity to the sequences of known Mn- and Fe-SODs. The metal binding residues conserved in Mn- and Fe-SODs were also found in A. pernix SOD. When the SOD gene was expressed in E. coli cells, the product formed a homodimer, and contained both Mn and Fe. Metal reconstitution experiments showed that A. pernix SOD is cambialistic, i.e. active with either Fe or Mn. The specific activities were 906 U/mg with Mn and 175 U/mg with Fe. No loss of activity of Mn-reconstituted SOD was observed at 105 degrees C even after 5 h incubation. Sodium azide, an inhibitor of SODs, did not inhibit the Mn-reconstituted SOD from A. pernix even at concentrations up to 400 mM. This SOD from an aerobic hyperthermophilic archaeon, Aeropyrum pernix, was extremely thermostable and active with either Mn or Fe. With Mn as a metal cofactor, it was more thermostable, and less sensitive to sodium azide and sodium fluoride than with Fe.
1(0,0,0,1)