1965727 |
Farooqui MY, Mumtaz MM, Ghanayem BI, Ahmed AE: Hemoglobin degradation, lipid peroxidation, and inhibition of Na+/K (+)-ATPase in rat erythrocytes exposed to acrylonitrile. J Biochem Toxicol. 1990 Winter;5(4):221-7. The effect of acrylonitrile (VCN) on erythrocyte lipid metabolism was investigated in vitro in metabolically active red cells from male Sprague-Dawley rats containing three types of hemoglobins: oxyhemoglobin, methemoglobin, and carbon monoxyhemoglobin. VCN at the concentration of 10 mM rapidly depleted erythrocyte glutathione (GSH) (75% of control) and induced lipid peroxidation (274% of control). Degradation of oxy- and methemoglobin was directly proportional to the extent of lipid peroxidation (r = 0.89). Addition of glucose to the incubation medium decreased hemoglobin degradation while it slightly increased VCN-induced lipid peroxidation. The highest amount of lipid peroxidation occurred in erythrocytes containing carbon monoxyhemoglobin and glucose. In the isolated red cell membranes incubated with 10 mM VCN, the lipid peroxidation was 400% of controls. VCN (25 mM) noncompetitively inhibited erythrocyte membrane Na+/K (+)-ATPase activity and the degree of inhibition was inversely proportional to the reaction temperature (r = -0.88). These findings indicate that the VCN induced hemoglobin degradation and lipid peroxidation are two extremes of a spectrum of oxidative damage in red cells leading to a change in physical state of membrane structure causing inhibition of adenosine triphosphate (ATPase) activity. |
33(0,1,1,3) |