Protein Information

ID 2480
Name CINP
Synonyms CINP; Cyclin dependent kinase 2 interacting protein; Full length cDNA clone CS0DI023YE22 of Placenta of Homo sapiens; Cyclin dependent kinase 2 interacting proteins

Compound Information

ID 1391
Name carbon disulfide
CAS carbon disulfide

Reference

PubMed Abstract RScore(About this table)
8887940 Gupta RP, Abou-Donia MB: Alterations in the neutral proteinase activities of central and peripheral nervous systems of acrylamide-, carbon disulfide-, or 2,5-hexanedione-treated rats. Mol Chem Neuropathol. 1996 Sep;29(1):53-66.
Proteinases are widespread in neuronal or nonneuronal eukaryotic cells. They are suggested to play an important role in the turnover of proteins in neuronal perikaryon and axon, and digestion of the transported cytoskeletal proteins in synaptic terminals. We examined the effect of acrylamide (50 mg/kg, ip), carbon disulfide (700 ppm, 9 h, 7 d a week), and 2,5-hexanedione (2,5-HD) (1% in drinking water) treatment of rats on mCANP (2 mM Ca2+), microCANP (0.1 mM Ca2+), and CINP (Ca (2+)-independent) activity in telencephalon + diencephalon (FB), rhombencephalon + mesencephalon (LB), spinal cord (SC), and sciatic nerve (SN). The proteinase activity was determined in the 30,000g supernatant fraction of tissues using 14C-methylated casein as the substrate. mCANP activity in FB, LB, and SC was inhibited only by acrylamide. Acrylamide or 2,5-HD treatment had no effect on microCANP and CINP activities of SN, whereas carbon disulfide enhanced microCANP after 15 d and CINP activity after 10 d. It is suggested that alteration in in vitro calpain activity shown by these chemicals may not be directly related to their neurotoxic effect. However, calpain may still be playing a role in this polyneuropathy by alteration in activity through inflow of Ca2+, release of Ca2+ from intracellular organelles, or other factors. Modification of cytoskeletal proteins making them more susceptible to proteases and the role of some other proteinase is also possible.
6(0,0,1,1)