9763530 |
Kurose I, Wolf RE, Grisham MB, Granger DN: Hypercholesterolemia enhances oxidant production in mesenteric venules exposed to Ischemia/Reperfusion. Arterioscler Thromb Vasc Biol. 1998 Oct;18(10):1583-8. It has been shown that hypercholesterolemia (HCh) exaggerates the microvascular dysfunction that is elicited by ischemia and reperfusion (I/R). The objective of this study was to determine whether oxidants contribute to the exaggerated inflammatory responses and enhanced albumin leakage observed in HCh rat mesenteric venules exposed to I/R (10 minutes of ischemia and 30 minutes of reperfusion). Intravital videomicroscopy was used to quantify the number of adherent and emigrated leukocytes, albumin extravasation, platelet-leukocyte aggregation in postcapillary venules, and the degranulation of adjacent mast cells. Oxidation of the fluorochrome dihydrorhodamine 123 (DHR) was used to monitor oxidant production by venular endothelium. I/R was shown to elicit an increased DHR oxidation in venules of both control and HCh rats, with the latter group exhibiting a significantly larger response. Treatment with either oxypurinol or superoxide dismutase largely prevented the leukocyte recruitment, platelet-leukocyte aggregation, mast cell degranulation, and enhanced DHR oxidation elicited by I/R in HCh rats. The enhanced albumin leakage was reduced by superoxide dismutase but not by oxypurinol. These results indicate that HCh amplifies the oxidant stress elicited by I/R and that interventions that blunt the oxidant stress effectively attenuate the leukocyte, platelet, and mast cell activation that result from I/R. |
31(0,1,1,1) |