Protein Information

ID 33
Name ATPase
Synonyms ATP7A; MK; ATPase; Cation transporting ATPase; ATP7A protein; ATPase Cu(2+) transporting alpha polypeptide; Copper pump 1; Copper transporting ATPase 1…

Compound Information

ID 1468
Name HCH
CAS 1,2,3,4,5,6-hexachlorocyclohexane

Reference

PubMed Abstract RScore(About this table)
9021765 Kristofikova Z, Klaschka J: In vitro effects of arachidonic and L-glutamic acids on the high-affinity choline transport in rat hippocampus. Neurochem Res. 1997 Jan;22(1):67-73.
A second messenger role for arachidonic acid (AA) in the regulation of the high-affinity choline uptake (HACU) was suggested. It was reported that micromolar concentrations of AA applied in vitro decreased the HACU values and increased the specific binding of [3H] hemicholinium-3 ([3H] HCh-3). It was published that L-glutamic acid (GA) applied in vivo produced a fall in the HACU values. In addition, GA liberates free AA. In this study, an ability of GA to influence in vitro the activity of presynaptic cholinergic nerve terminals via its effect on the release of AA is investigated in hippocampal synaptosomes of young Wistar rats. Millimolar concentrations of GA decrease both the high- and low-affinity choline uptake, the specific as well as nonspecific binding of [3H] HCh-3 and the activity of Na+, K (+)-ATPase. Kinetic analysis (Lineweaver-Burk and Scatchard plots) reveals a change in Vmax and Bmax, but not in KM and KD. It appears very likely that under normal conditions GA applied in vitro is not able to change markedly the choline transport via its effect on the release of AA. Results confirm the hypothesis about an indirect inhibitory role for glutamatergic receptors on cholinergic cells.
31(0,1,1,1)