19472050 |
Kimoto H, Eto R, Abe M, Kato H, Araki T: Alterations of glial cells in the mouse hippocampus during postnatal development. Cell Mol Neurobiol. 2009 Dec;29(8):1181-9. Epub . We investigated the postnatal alterations of neurons, astrocyte, oligodendrocyte, and microglia in the mouse hippocampal CA1 sector and dentate gyrus under the same conditions using immunohistochemistry. Neuronal nuclei (NeuN), Glial fibrillary acidic protein (GFAP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), and ionized calcium binding adaptor molecule 1 (Iba 1) immunoreactivity were measured in 1-, 2-, 4-, and 8-week-old mice. Total number of NeuN-positive neurons was unchanged in the mouse hippocampal CA1 sector and dentate gyrus from 1 to 8 weeks of birth. In contrast, a significant increase in the number of GFAP-positive astrocytes was observed only in the hippocampal CA1 sector of 1-week-old mice when compared with 8-week-old animals. Thereafter, total number of GFAP-positive astrocytes was unchanged in the hippocampal CA1 sector and dentate gyrus from 2 to 8 weeks of birth. For microglia, a significant increase in the number of Iba 1-positive microglia was observed in the hippocampal CA1 sector and dentate gyrus of 1-, 2-, and 4-week-old mice as compared with 8-week-old animals. On the other hand, a significant decrease in the area of expression of CNPase-positive fibers was observed in the hippocampal CA1 sector of 1- and 2-week-old mice as compared with 8-week-old animals. In dentate gyrus, a significant decrease in the area of expression of CNPase-positive fibers was found in 1-, 2-, and 4-week-old mice. Furthermore, our double-labeled immunostaining showed that brain-derived neurotrophic factor (BDNF) immunoreactivity was observed in GFAP-positive astrocytes and Iba 1-positive microglia in the hippocampal CA1 sector and dentate gyrus of 1- and 2-week-old mice. These results show that glial cells may play some role in the maintenance and neuronal functions of hippocampal CA1 pyramidal neurons and granule cells of dentate gyrus during postnatal development. Furthermore, our results demonstrate that glial BDNF may play an important role in the maturation of oligodendrocyte in the hippocampal CA1 sector and dentate gyrus during postnatal development. Thus, our findings provide valuable information on the developmental processes. |
2(0,0,0,2) |