19509156 |
Yamamichi N, Shimomura R, Inada K, Sakurai K, Haraguchi T, Ozaki Y, Fujita S, Mizutani T, Furukawa C, Fujishiro M, Ichinose M, Shiogama K, Tsutsumi Y, Omata M, Iba H: Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development. Clin Cancer Res. 2009 Jun 15;15(12):4009-16. Epub 2009 Jun 9. PURPOSE: To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal cancer development using in situ hybridization (ISH). EXPERIMENTAL DESIGN: Locked nucleic acid (LNA)/DNA probes and a biotin-free tyramide signal amplification system were used in ISH analyses of miRNA expression. Conditions for specific detection of miR-21 were determined using human cell lines and miR-21-expressing lentiviral vectors. Expression was determined in 39 surgically excised colorectal tumors and 34 endoscopically resected colorectal polyps. RESULTS: In the surgical samples, miR-21 expression was much higher in colorectal cancers than in normal mucosa. Strong miR-21 expression was also observed in cancer-associated stromal fibroblasts, suggesting miR-21 induction by cancer-secreted cytokines. Protein expression of PDCD4, a miR-21 target, was inversely correlated with miR-21 expression, confirming that miR-21 is indeed a negative regulator of PDCD4 in vivo. In the endoscopic samples, miR-21 expression was very high in malignant adenocarcinomas but was not elevated in nontumorigenic polyps. Precancerous adenomas also frequently showed miR-21 up-regulation. CONCLUSION: Using the LNA-ISH system for miRNA detection, miR-21 was detectable in precancerous adenomas. The frequency and extent of miR-21 expression increased during the transition from precancerous colorectal adenoma to advanced carcinoma. Expression patterns of miR-21 RNA and its target, tumor suppressor protein PDCD4, were mutually exclusive. This pattern may have clinical application as a biomarker for colorectal cancer development and might be emphasized by self-reinforcing regulatory systems integrated with the miR-21 gene, which has been previously shown in cell culture. |
10(0,0,0,10) |