7491257 |
Zong X, Schreieck J, Mehrke G, Welling A, Schuster A, Bosse E, Flockerzi V, Hofmann F: On the regulation of the expressed L-type calcium channel by cAMP-dependent phosphorylation. Pflugers Arch. 1995 Jul;430(3):340-7. The Ca2+ channel subunits alpha 1C-a and alpha 1C-b were stably expressed in Chinese hamster ovary (CHO) and human embryonic kidney (HEK) 293 cells. The peak Ba2+ current (IBa) of these cells was not affected significantly by internal dialysis with 0.1 mM cAMP-dependent protein kinase inhibitor peptide (mPKI), 25 microM cAMP-dependent protein kinase catalytic subunit (PKA), or a combination of 25 microM PKA and 1 microM okadaic acid. The activity of the alpha 1C-b channel subunit expressed stably in HEK 293 cells was depressed by 1 microM H 89 and was not increased by superfusion with 5 microM forskolin plus 20 microM isobutyl-methylxanthine (IBMX). The alpha 1C-a.beta 2.alpha 2/delta complex was transiently expressed in HEK 293 cells; it was inhibited by internal dialysis of the cells with 1 microM H 89, but was not affected by internal dialysis with mPKI, PKA or microcystin. Internal dialysis of cells expressing the alpha 1C-a.beta 2.alpha 2/delta channel with 10 microM PKA did not induce facilitation after a 150-ms prepulse to +50 mV. The Ca2+ current (ICa) of cardiac myocytes increased threefold during internal dialysis with 5 microM PKA or 25 microM microcystin and during external superfusion with 0.1 microM isoproterenol or 5 microM forskolin plus 50 microM IBMX. These results indicate that the L-type Ca2+ channel expressed is not modulated by cAMP-dependent phosphorylation to the same extent as in native cardiac myocytes. |
1(0,0,0,1) |